Aug 26, 2009

{f

TexAs
INSTRUMENTS




Introduction
1. What is PRU SS?

QO Programmable Real-time Unit SubSystem
Q Dual 32bit RISC processors running at %2 CPU freq.
0 Local instruction and data RAM. Access to SoC resources

2. What devices include PRU SS?
o OMAPL138
o C6748, Co6746

3. Why PRU SS?

Q Full programmability allows adding customer differentiation

Q Efficient in performing embedded tasks that require manipulation
of packed memory mapped data structures

Q Efficient in handling of system events that have tight realtime
constraints.

13 TEXAS
INSTRUMENTS




PRUSS Is/Is-Not

Is

Is-Not

Dual 32-bit RISC processor specifically
designed for manipulation of packed
memory mapped data structures and
implementing system features that have
tight real time constraints

In not a H/W accelerator to speed up
algorithm computations.

Simple RISC ISA
»Approximately 40 instructions

»Logical, arithmetic, and flow control ops
all complete in a single cycle

Is not a general purpose RISC processor

»No multiply hardware/instructions, no
cache, no pipeline

»No C programming

Simple tooling - basic command-line
assembler/linker

Is not integrated with CCS. Doesn’t
include advanced debug options

Includes example code to demonstrate
various features. Examples can be used
as building blocks

No Operating System and high level
application SW stack

13 TEXAS
INSTRUMENTS




PRU Value

1. Extend Connectivity and Peripheral capability
O Implement special peripherals and bus interfaces (e.g. UARTS)

0 Implement smart data movement schemes. Especially useful for
Audio algorithms (e.g. Reverb, Room Correction)

2. Reduce System Power Consumption
QO Allows switching off both ARM and DSP clocks

Q Implement smart power controller by evaluating events before
waking up DSP and/or ARM. Maximized power down time

3. Accelerate System Performance
Q Full programmability allows custom interface implementation

O Specialized custom data handling to offload DSP for innovative
signal processing algorithm implementation

i3 TEXAS
INSTRUMENTS




Special Interface Implementation

Extends SoC capability by
allowing interface to variety
of data sensors

2. Enables access to markets
that require support for

application specific E

Interconnects and unique

bus interfaces

3. Allows customer system
differentiation and customer
platform reuse

o
=
1
J
D
=
=k
d
A
c
=
3
=1
®d
3
D
=
(o
Q
L
o
=
7]

13 TEXAS
INSTRUMENTS




Smart Data Move and Advanced DMA

mW

EEIIIIIEIIIIIIIZL “

1. Advanced DMA Operation
0o  Simplifies audio algorithm development.

O Low MIPS implementation of complex
audio algorithm; Reverberation; Room
Correction

O  On the fly data format modifications
reduces CPU overhead

2. Smart Data Move
a  Buffer manipulation; data blending

O Smart data rendering with various fill v
effects

X
8-
=

_/ 6

i3 TEXAS
INSTRUMENTS




Extends Low Power Advantage

Capable to receive majority of
system events (up to 32 at a time). 4

Can put both ARM and DSP to
lowest power modes; ie Turn off
clocks to both the processors

Implement smart power controller
by analyzing events and only
enabling DSP/ARM for relevant
events. Maximizes the power down
state

G3INNSNOD ¥3AMOd 3JIA3A

GRADUAL POWER REDUCTION

SW Programmable to handle tasks
for common events; thereby

reducing need to activate Senses Events and activates

DSP/ARM Only if needed.
DSP/ARM Implements Smart power controller

ONLY PRU ACTIVE!

Mukul Bhatnagar

13 TEXAS
INSTRUMENTS




{f

TexAs
INSTRUMENTS




PRU Subsystem

Provides two independent
programmable real-time

(PRU) cores

o 32-Bit Load/Store RISC PRU Subsystem Functional Block Diagram

architecture

O 4K Byte instruction RAM 32 GPO
(1K instructions) per core 30 GPI

QO 512 Bytes data RAM per
core

PRU operation is little 32 GPO

endian similar to ARM and 30 Pl m _m
DSP processors

Includes Interrupt

Controller for system event
SQDQ__DQ Ints to
Fast I/O interface ARM/DSP INTC A”

O 199UU02I8}U| )IG-Z

Master I/F
(to SCR2)

v

a

a 30 input pins and 32 Porion 3 prUs >
output pins per PRU core

Slave I/F
(from SCR2)

Power management via
single PSC

13 TEXAS
INSTRUMENTS




Local & Global Memory Map

» Local Memory Map

Instruction Space Memory Map

Start End PRUO PRU1
. 0x00000000 |0x00000FFF [PRUQ Instruction RAM PRU1 Instruction RAM
a Allows PRU to directly access
Data Space Memory Map
subsystem resources, e.g. o [ S 1T [T ——
H :10x00000000 |0%000001FF |Data RAM 0 Data RAM 1 :
Dm>_/\_. _Zl_lo —.®©_m._”®—.m. m._no 0x00000200 |0x00001FFF  |Reserved Reserved
. :10x00002000 |0x000021FF |Data RAM 1 Data RAM 0
Q ZO|_|m _/\_m_\jnuﬂv\ Bm—u m__@j._”_v\ B R T o T T T R e e e
. 0x00004000 |Ox00006FFF |INTC Registers INTC Registers
Q_.ﬁ._umﬂms._” .:.03 Umco m:a U_NC\_ 0x00007000 |0x000073FF |PRUOQ Control Registers PRUO Control Registers
H H 0x00007400 |0x000077FF |Reserved Reserved
Uo_j._nlo._ul/\_mé 0x00007800 |0x00007BFF |PRU1 Control Registers PRU1 Control Registers
0x00007C00 |Ox0000FFFF  |Reserved Reserved
V O_O_Um_ _/\_QEOJ\ _/\_m_u 0x00010000 |0xFFFFFFFF |Reserved Reserved
Global Address Map
O Allows external masters to
Registers
access PRU subsystem Address Offset Region
Q U Q 0x01C30000 0x01C301FF Data RAM 0
0x01C30200 0x01C31FFF Reserved
—.mmOCﬂomm. m© m C@ m: 0x01C32000 0x01C321FF Data RAM 1
1 0x01C32200 0x01C33FFF Reserved
OO—)_._”_:O_ _‘.®©_m._”m_»m 0x01C34000 0x01C36FFF INTC Registers
0x01C37000 0x01C373FF PRUOQ Control Registers
0x01C37400 0x01C377FF PRUOQ Debug Registers
D Umc Ooq.mm Oms m_mo Cmm Q_Ocm_ 0x01C37800 0x01C37BFF PRU1 Control Registers
0x01C37C00 0x01C37FFF PRU1 Debug Registers
BQBOWV\ BmU_ UC._” Boq.m _m._”®30< 0x01C38000 0x01C38FFF PRUQO Instruction RAM
. 0x01C39000 0x01C3BFFF Reserved
since access routed ﬁjﬂOCGI 0x01C3C000 Ox01C3CFFF PRU1 Instruction RAM
momw 0x01C3D000 0x01C3FFFF Reserved
10
i3 Texas

INSTRUMENTS




{f

TexAs
INSTRUMENTS




PRU Functional Block Diagram

Constant Table

Ease SW development by
providing freq used constants

All instructions are performed on registers
and complete in a single cycle

Register file appears as linear block for

all register to memory operations Peripheral base addresses

Few entries programmable

Execution Unit
Logical, arithmetic, and flow

EXECUTION control instructions
UNIT Scalar, no Pipeline, Little

Endian
Register-to-register data flow

Addressing modes: Ld
Immediate & Ld/St to Mem

RN
R N+1
| RN+2 |

Instruction
RAM

Instruction RAM
4KB in size; 1K Instructions
Can be updated with PRU reset

s Write: 32 GPO

R31
+» Read: 30 GPI + 2 Host Int status
+»» Write: Generate INTC Event

13 TEXAS
INSTRUMENTS




PRU Constants Table

» Load and store instructions require that the
destination/source base address be loaded in a register.

» Constants table is a list of 32 commonly-used addresses
that can be used in memory load and store operations
via special instructions.

» Most constant table entries are fixed, but some contain a
programmable bit field that is programmable through the
PRU control registers.

» Using the constants table saves both the register space
as well as the time required to load pointers into
registers.

13

13 TEXAS
INSTRUMENTS




PRUO/1 Constants Table

Entry# Region Pointed To Value [31:0] Entry # Region Pointed To Value [31:0]
0 |PRUINTC 0x00004000 16 |RESERVED Ox01E12000
1 |Timer64P0 0x01C20000 17 [2C1 0x01E28000
2 |12C0 0x01C22000 18 [EPWMO 0x01F00000
3 |PRUO/I Local Data 0x00000000 19 |EPWMI 0x01F02000
4 |PRU1/0 Local Data 0x00002000 20 |RESERVED Ox01F04000
5 |MMC/SD 0x01C40000 21 |ECAPO 0x01F06000
6 |SPIO 0x01C41000 22 [ECAPI 0x01F07000
7 |UARTO 0x01C42000 23 |ECAP2 0x01F08000
8 |McASPO DMA 0x01D02000 24 |PRUO0/1 Local Data | 0x00000n00, n = c24 blk index[3:0]
9 |RESERVED 0x01D06000 25 |McASPO Control 0x01D00n00, n = c25 blk index[3:0]
10 |RESERVED 0x01D0A000 26 |[RESERVED 0x01D04000
11 JUARTI 0x01D0C000 27 |RESERVED 0x01D08000
12 |UART2 0x01D0D000 28 |DSP RAM/ROM 0x11nnnn00, nnnn = ¢28 pointer] 15:0]
13 JUSBO 0x01E00000 29 [EMIFa SDRAM 0x40nnnn00, nnnn = ¢29 pointer| 15:0]
14 JUSBI 0x01E25000 30 [L3RAM 0x80nnnn00, nnnn = c30 pointer] 15:0]
15 [UHPI Config 0x01E10000 31 |EMIFb Data 0xCOnnnn00, nnnn = ¢31 pointer[15:0]
NOTES

1. Constants not in this table can be created ‘on the fly’ by loading two 16-bit values into a PRU register. These
constants are just ones that are expected to be commonly used, enough so to be hard-coded in the PRU

constants table.

2. Constants table entries 24 through 31 are not fully hard coded
programmable through the PRU control registers. Programmable entries allow you to select different 256-
byte pages within an address range.

they contain a programmable bit field that is

14

13 TEXAS
INSTRUMENTS




PRU Event/Status Register (R31)

» Writes: Generate output events to the INTC.

a Write the event number (0 through 31) to PRU_VEC[4:0] and
simultaneously set PRU VEC VALID to create a pulse to INTC.

a Outputs from both PRUs are ORed together to form single output.

Q Output events 0 through 31 are connected to system events 32 through 63
on INTC.

» Reads: Return Host 1 & 0 interrupt status from INTC and general

purpose input pin status.

R31 During Writes

Bit Name Description
31:6 RSV Reserved
5 PRU VEC VALID Valid strobe for vector output
4:0 PRU VEC[4:0] Vector output
R31 During Reads
Bit Name Description
31 PRU INTR INJ[1] PRU Host 1 interrupt from INTC
30 PRU INTR INJ[O] PRU Host 0 interrupt from INTC
29:0 PRU R31 STATUS[29:0] Status inputs from PRU#n R31[29:0]

15

13 TEXAS
INSTRUMENTS




Dedicated GPIls and GPOs

» General purpose inputs (GPIs)
O Each PRU has 30 general purpose input pins: PRUO_R31[29:0] and
PRU1_R31[29:0].
O Reading R31[29:0] in each PRU returns the status of PRUn_R31[29:0].

» General purpose outputs (GPOs)
O Each PRU has 32 general purpose output pins: PRUO _R30[31:0] and
PRU1_R30[31:0].
O The value written to R30[31:0] is driven on PRUn_R30[31:0].

» Notes
Q Unlike the device GPIOs, PRU GPIs and GPOs are assigned to different
pins.
O You can use the “.” operator to read or write a single bit in R30 and R31,
e.g. R30.t0.

O PRU GPOs and GPlIs are enabled through the system pin mux registers
(PINMUX0-19).

16

13 TEXAS
INSTRUMENTS




{f

TexAs
INSTRUMENTS




Interrupt Controller (INTC) Overview

» Supports 64 system events

QO 32 system events external to the PRU subsystem

O 32 system events generated directly by the PRU cores
» Supports up to 10 interrupt channels

Q Allows for interrupt nesting.
» Generation of 10 host interrupts

0 Host Interrupt 0 mapped to R31.b30 in both PRUs

0 Host Interrupt 1 mapped to R31.b31 in both PRUs
0 Host Interrupt 2 to 9 routed to ARM and DSP INTCs.

» System events can be individually enabled, disabled, and
manually triggered

» Each host event can be enabled and disabled
» Hardware prioritization of system events and channels

18

13 TEXAS
INSTRUMENTS




Interrupt Controller Block Diagram

Host Mapping of Channels

Channel Mapping of System Events

AN AN
r I - I
M%_c_w“\w‘r Sys Event 0
: Host-0 Channel-0 < Peripheral Event 0
PRUOA Sys Event 2
R31.b31 Host-1 — Channel-1
o
Host-2 Channel-2 o
Host-3 Channel-3 N o
Host-4 \ Channel-4 Sys Event 30 o
Host-5 -5
PRUSS_EVTOUTO Channel
to Sys Event 31
PRUSS_EVTOUT7 Host-6 Channel-6 Peripheral Event 31
\
Host-7 Channel-7 Sys Event 34 System Events
32 to 63
Host-8 Channel-8 < _u*_mw_ﬂ:
Sys Event 58 A
Host-9 Channel-9
-
19
i3 Texas

INSTRUMENTS




Interrupt Controller Mapping

» System events must be mapped to channels
O Multiple system events can be mapped to the same channel.
0 Not possible to map system events to more than one channel.
QO System events mapped to same channel = lower-numbered

events have higher priority

» Channels must be mapped to host interrupts
0 Multiple channels can be mapped to the same host interrupit.
0 Not possible to map channels to more than one host interrupt.

0 Recommended to map channel “x” to host interrupt “x”, where “x” is
from 0 to 9.

a Channels mapped to the same host interrupt = lower-numbered
channels have higher priority

20

13 TEXAS
INSTRUMENTS




System Event to Channel Mapping

System System System System
Event 3 Event 2 Event 1 Event 0
CHANMAPO % % % %
31 SI3 MAP 24 23 SI2 MAP 16 15 SI1_MAP 8 7 SI0O_MAP 0
CH8 [08h] CH5 [05h] %sﬁ
CH9 CHS8 CH7 CHG6 CH5 CH4 CH3 CH2 CH1 CHO

21

13 TEXAS
INSTRUMENTS




Channel to Host Interrupt Mapping

EVTOUT7 PRUSS EVTOUT5S PRUSS EVTOUT3 PRUSS EVTOUT1

EVTOUT6

EVTOUT4

EVTOUT2

* Recommended to map channel “x” to host interrupt “x”.

PRUSS_
EVTOUTO

CH9 CHS8 CH7 CHG6 CH5 CH4 CH3 CH2 CHA1 CHO
HOSTMAPO \ \
31 CH3_MAP 24 23 CH2 _MAP 14 15 CH1_MAP g 7 CHO_MAP o
HOST3 [03h] HOST3 [03h] HOST1 [01h] HOSTO [00h]
HOST9|[HOST8[HOST7 [HOST6|HOSTS5|HOST4|HOST3|HOST2[HOST1|HOSTO
PRUSS._ R PRUSS_ % PRUSS._ R PRUSS._ R R31.b31 R31.b30

22

13 TEXAS
INSTRUMENTS




{f

TexAs
INSTRUMENTS




PRU Instruction Overview

» Four instruction classes
O Arithmetic
O Logical
O Flow Control
O Register Load/Store

» Instruction Syntax
O Mnemonic, followed by comma separated parameter list

O Parameters can be a register, label, immediate value, or constant table
entry

QO Example
= SUBTr3,r3, 10

= Subtracts immediate value 10 (decimal) from the value in r3 and then places
the result in r3

» Nearly all instructions (with exception of memory accesses) are single-
cycle execute
Q 6.67 ns when running at maximum 150 MHz

24

13 TEXAS
INSTRUMENTS




PRU Instruction Syntax Conventions

» Instruction definitions use a certain syntax to indicate
acceptable parameters types

Parameter Name Meaning Examples
REG, REG1, REG2, ... Any register field from 8 to 32 bits r0, r1.w0, r3.b2
Rn, Rn1, Rn2, ... Any 32 bit register field (rO through r31) r0, r1
Rn.tx Any 1 bit reqister field r0.t23, r1.b2.15
Cn, Cn1, Cn2, ... Any 32 bit constant table entry (cO through ¢31) c0,c1
Specifies a field that must be b0, b1, b2, or b3 —
bn denoting r0.b0, r0.b1, r0.b2, and r0.b3 respectively. b0,b1

Any valid label, specified with or without parenthesis.
An immediate value denoting an instruction address is | loop1, (loop1),
LABEL also acceptable. 0x0000
An immediate value from 0 to n. Immediate values can
be specified with or without a leading hash
"\#".Immediate values, labels, and register addresses [#23, 0b0110, 2+2,

IM(n) are all acceptable. &r3.w2,
r0, r1.w0, #0x7F,
1<<3, loop1,
OP(n) The union of REG and IM(n) &r1.w0
i3 TEXAS

INSTRUMENTS




PRU Register Accesses

» PRU is suited to handling packets and structures, parsing
them into fields and other smaller data chunks

» Valid registers formats allow individual selection of bits,
bytes, and half-words from within individual registers

» The parts of the register can be accessed using the
modifier suffixes shown

Suffix Range of n Meaning
16 bit field with a byte offset of n within
Wn 0to 2 the parent field
8 bit field with a byte offset of n within the
.bn 0to3 parent field
1 bit field with a bit offset of n within the
tn 0 to 31 parent field

26

13 TEXAS
INSTRUMENTS




Register Examples

> 1r0.b0
31] 24]23] 16]15] B[7]
[ [TTTTTT]
> 1r0.b2
31 24]23] 16[15] 8]7]
[ TTTTTTT]
> r0.w0
3] 24]23] 16]15] Bi
[ TTTTTTTITTITTTITT]
> r0.w1
31 24]23] 16[15] B[7]

27

13 TEXAS
INSTRUMENTS




Register Examples, cont’d

> r0.t12

31 24]23) 16[15) 5]7]

[ ]

> r0.w2.b1 =r0.b3

1] 2423 16[15) 8 ]7]
» r0.w1.b1.13 =r0.b2.13 =r0.119

31 24]23) 16[15) 5]7]

| ]

> ro.w2.112 =r0.128

1] 2423 16[15) 5]7]

28

13 TEXAS

INSTRUMENTS




PRU Instruction Set

Arithmetic Operations (green) Logic Operations (blue)
Pseudo Op-code (lItalic)

IO Operations (black) Program Flow Control (red)

ADD ADC SUB SUC RSB
RSC LSL LSR AND OR
XOR NOT MIN MAX CLR
SET SCAN LMBD MOV LDl
LBBO SBBO LBCO SBCO ZERO
MVIB MVIW MVID JAL JMP
QBGT QBGE QBLT QBLE QBEQ
QBNE QBA QBBS QBBC WBS
WBC HALT SLP CALL RET

29

13 TEXAS

INSTRUMENTS




Arithmetic Instructions

>

>

>

>

Unsigned Integer Add (ADD)
O  Performs 32-bit add on two 32 bit zero extended source values.
Q  Definition:
ADD REG1, REG2, OP(255)
Q  Operation:
REG1 = REG2 + OP(255)
carry = (( REG2 + OP(255) ) >> bitwidth(REG1)) & 1

Unsigned Integer Add with Carry (ADC)
Q  Performs 32-bit add on two 32 bit zero extended source values, plus a stored carry bit.
a  Definition:
ADC REG1, REG2, OP(255)
] Operation:
REG1 = REG2 + OP(255) + carry
carry = (( REG2 + OP(255) + carry ) >> bitwidth(REG1)) & 1
Unsigned Integer Subtract (SUB)
O Performs 32-bit subtract on two 32 bit zero extended source values
a  Definition:
SUB REG1, REG2, OP(255)
a Operation:
REG1 = REG2 - OP(255)
carry = (( REG2 - OP(255) ) >> bitwidth(REG1)) & 1
Unsigned Integer Subtract with Carry (SUC)
a Performs 32-bit subtract on two 32 bit zero extended source values with carry (borrow)
a  Definition:
SUC REG1, REG2, OP(255)
Q  Operation:
REG1 = REG2 - OP(255) — carry
carry = (( REG2 - OP(255) - carry ) >> bitwidth(REG1)) & 1

30

13 TEXAS

INSTRUMENTS




Arithmetic Instructions, cont’d

» Reverse Unsigned Integer Subtract (RSB)

O Performs 32-bit subtract on two 32 bit zero extended source values.
Source values reversed.
O Definition:
RSB REG1, REG2, OP(255)
O Operation:
REG1 = OP(255) - REG2
carry = (( OP(255) - REG2 ) >> bitwidth(REG1)) & 1

» Reverse Unsigned Integer Subtract with Carry (RSC)

O Performs 32-bit subtract on two 32 bit zero extended source values with
carry (borrow). Source values reversed.
O Definition:
RSC REG1, REG2, OP(255)
O Operation:
REG1 = OP(255) - REG2 — carry
carry = (( OP(255) - REG2 - carry ) >> bitwidth(REG1)) & 1

31

13 TEXAS
INSTRUMENTS




Logical Instructions

> Bitwise AND (AND)

o Performs 32-bit logical AND on two 32 bit zero extended source values.

a Definition:
AND REG1, REG2, OP(255)

0 Operation:
REG1 = REG2 & OP(255)

> Bitwise OR (OR)
a Performs 32-bit logical OR on two 32 bit zero extended source values.

o Definition:
OR REG1, REG2, OP(255)

o Operation:
REG1 = REG2 | OP(255)

> Bitwise Exclusive OR (XOR)
o Performs 32-bit logical XOR on two 32 bit zero extended source values.

0 Definition:
XOR REG1, REG2, OP(255)
0 Operation:
REG1 = REG2 » OP(255)
> Bitwise NOT (NOT)
o Performs 32-bit logical NOT on the 32 bit zero extended source value.
a Definition:
NOT REG1, REG2

o Operation:
REG1 = ~REG2

32

13 TEXAS
INSTRUMENTS




Logical Instructions, cont’d

» Logical shift left (LSL)
o Performs 32-bit shift left of the zero extended source value

a Definition:
LSL REG1, REG2, OP(31)

0 Operation:
REG1 = REG2 << ( OP(31) & Ox1f)

» Logical Shift Right (LSR)
0 Performs 32-bit shift right of the zero extended source value

o Definition:
LSR REG1, REG2, OP(31)

o Operation:
REG1 = REG2 >> ( OP(31) & 0x1f)

» Copy Minimum (MIN)
o Compares two 32 bit zero extended source values and copies the minimum value to the destination register.

a Definition:
MIN REG1, REG2, OP(255)

0 Operation:
if( OP(255) > REG2 ) REG1 = REG2; else REG1 = OP(255);

» Copy Maximum (MAX)
o Compares two 32 bit zero extended source values and copies the maximum value to the destination register.

o Definition:
MAX REG1, REG2, OP(255)

o Operation:
if OP(255) > REG2 ) REG1 = OP(255); else REG1 = REG2;

13 TEXAS
INSTRUMENTS




Logical Instructions, cont’d

>

>

Clear Bit (CLR)
Clears the specified bit in the source and copies the result to the destination. Various calling formats are supported:

a
a

a

a

Format 1 Definition:
CLR REG1, REG2, OP(31)
Format 1 Operation:
REG1 = REG2 & ~( 1 << (OP(31) & 0x1f) )
Format 2 (same source and destination) Definition:
CLR REG1, OP(255)
Format 2 (same source and destination) Operation:
REG1 = REG1 & ~( 1 << (OP(31) & 0x1f))
Format 3 (source abbreviated) Definition:
CLR REG1, Rn.tx
Format 3 (source abbreviated) Operation:
REG1 = Rn & ~(1<<x)
Format 4 (same source and destination — abbreviated) Definition:
CLR Rn.tx
Format 4 (same source and destination — abbreviated) Operation:
Rn = Rn & ~(1<<x)

Set Bit (SET)
Sets the specified bit in the source and copies the result to the destination. Various calling formats are supported.

a
a

Format 1 Definition:
SET REG1, REG2, OP(31)
Format 1 Operation:
REG1=REG2| (1 << (OP(31) & 0x1f))
Format 2 (same source and destination) Definition:
SET REG1, OP(31)
Format 2 (same source and destination) Operation:
REG1 = REG1 | (1 << (OP(31) & 0x1f))
Format 3 (source abbreviated) Definition:
SET REG1, Rn.tx
Format 3 (source abbreviated) Operation:
REG1 = Rn | (1<<x)
Format 4 (same source and destination — abbreviated) Definition:
SET Rn.tx
Format 4 (same source and destination — abbreviated) Operation:
Rn =Rn | (1<<x)

34

13 TEXAS

INSTRUMENTS




Logical Instructions, cont’d

» Left-Most Bit Detect (LMBD)

0 Scans REG2 from its left-most bit for a bit value

matching bit 0 of OP(255), and writes the bit number in

REG1 (writes 32 to REGH1 if the bit is not found).

a Definition:
LMBD REG1, REG2, OP(255)

0 Operation:
for( i=(bitwidth(REG2)-1); 1i>=0; i-- )
{

if( ' ((( REG2>>1) ~ OP(255))&l) ) break;

}
if( 1i<0 ) REG1l = 32; else REGl = 1i;

35

13 TEXAS
INSTRUMENTS




low Control Instructions

> Unconditional Jump (JMP)
O Unconditional jump to a 16 bit instruction address, specified by register or immediate value.
a  Definition:
JMP OP(65535)
Q  Operation:
PRU Instruction Pointer = OP(65535)
> Unconditional Jump and Link (JAL)

O Unconditional jump to a 16 bit instruction address, specified by register or immediate value. The address following the JAL instruction
is stored into REG1, so that REG1 can later be used as a "return" address.

Q  Definition:
JAL REG1, OP(65535)
Q  Operation:
REG1 = Current PRU Instruction Pointer + 1
PRU Instruction Pointer = OP(65535)
> Halt Operation (HALT)

O The HALT instruction disables the PRU. This instruction is used to implement software breakpoints in a debugger. The PRU program

counter remains at its current location (the location of the HALT). When the PRU is re-enabled, the instruction is re-fetched from
instruction memory.

Q  Definition:
HALT
a Operation:
Disable PRU
> Sleep Operation (SLP)

QO The SLP instruction will sleep the PRU, causing it to disable its clock. This instruction can specify either a permanent sleep (requiring a

PRU reset to recover) or a "wake on event". When the wake on event option is set to "1", the PRU will wake on any event that is
enabled in the PRU Wakeup Enable register.

a  Definition:
SLP IM(1)
Q  Operation:
Sleep the PRU with optional "wake on event" flag.

36

13 TEXAS
INSTRUMENTS




Flow Control Instructions, cont’d

» Quick Branch if Greater Than (QBGT)
o Jumps if the value of OP(255) is greater than REG1.

a Definition:
QBGT LABEL, REG1, OP(255)

0 Operation:
Branch to LABEL if OP(255) > REG1

» Quick Branch if Greater Than or Equal (QBGE)
o Jumps if the value of OP(255) is greater than or equal to REG1.

o Definition:
QBGE LABEL, REG1, OP(255)

o Operation:
Branch to LABEL if OP(255) >= REG1

» Quick Branch if Less Than (QBLT)
a Jumps if the value of OP(255) is less than REG1.

a Definition:
QBLT LABEL, REG1, OP(255)

0 Operation:
Branch to LABEL if OP(255) < REG1

» Quick Branch if Less Than or Equal (QBLE)
o Jumps if the value of OP(255) is less than or equal to REG1.

o Definition:
QBLE LABEL, REG1, OP(255)

o Operation:
Branch to LABEL if OP(255) <= REG1

37

13 TEXAS

INSTRUMENTS




Flow Control Instructions, cont’d

» Quick Branch if Equal (QBEQ)
a Jumps if the value of OP(255) is equal to REG1.

Q Definition:
QBGT LABEL, REG1, OP(255)

0 Operation:
Branch to LABEL if OP(255) == REG1

> Quick Branch if Not Equal (QBNE)
a Jumps if the value of OP(255) is NOT equal to REG1.
a Definition:
QBNE LABEL, REG1, OP(255)
0 Operation:
Branch to LABEL if OP(255) |= REG1
> Quick Branch Always (QBA)

a Jump always. This is similar to the JMP instruction, only QBA uses an address
offset and thus can be relocated in memory.
a Definition:
QBA LABEL
0 Operation:
Branch to LABEL

38

13 TEXAS
INSTRUMENTS




Flow Control Instructions, cont’d

» Quick Branch if Bit is Set (QBBS)

a
a

Q

Q

Q

Jumps if the bit OP(31) is set in REGH1.
Format 1 Definition:
QBBS LABEL, REG1, OP(31)
Format 1 Operation:
Branch to LABEL if( REG1 & (1 << (OP(31) & 0x1f) ) )
Format 2 Definition:
QBBS LABEL, Rn.tx
Format 2 Operation:
Branch to LABEL if( Rn & (1<<x) )

» Quick Branch if Bit is Clear (QBBC)

a
a

Q

Jumps if the bit OP(31) is clear in REG1.
Format 1 Definition:
QBBC LABEL, REG1, OP(31)
Format 1 Operation:
Branch to LABEL if( (REG1 & (1 << (OP(31) & 0x1f) )))
Format 2 Definition:
QBBC LABEL, Rn.tx
Format 2 Operation:
Branch to LABEL if( /(Rn & (1<<x)) )

39

13 TEXAS

INSTRUMENTS




oad/Store Instructions

a
a

a

a

a

a

Load Immediate (LDI)

The LDI instruction moves the value from IM(65535), zero extends it, and stores it into REG1.
Definition:

LDI REG1, IM(65535)
Operation:

REG1 = IM(65535)

Load Byte Burst (LBBO)

The LBBO instruction is used to read a block of data from memory into the register file. The memory address to read from is specified
by a 32 bit register (Rn2), using an optional offset. The destination in the register file can be specified as a direct register, or indirectly
through a register pointer.

Format 1 (immediate count) definition:
LBBO REG1, Rn2, OP(255), IM(124)
Format 1 (immediate count) operation:
memcpy( offset(REG1), Rn2+0P(255), IM(124) );
Format 2 (register count) definition:
LBBO REG1, Rn2, OP(255), bn
Format 2 (register count) operation:
memcpy( offset(REG1), Rn2+OP(255), R0.bn );

Store Byte Burst (SBBO)

The SBBO instruction is used to write a block of data from the register file into memory. The memory address to write to is specified by
a 32 bit register (Rn2), using an optional offset. The source in the register file can be specified as a direct register, or indirectly through
a register pointer.

Format 1 (immediate count) definition:
» SBBO REGH1, Rn2, OP(255), IM(124)
Format 1 (immediate count) operation:
=  memcpy( Rn2+0OP(255), offset(REG1), IM(124) );
Format 2 (register count) definition:
= SBBO REG1, Rn2, OP(255), bn
Format 2 (register count) operation:
=  memcpy( Rn2+0OP(255), offset(REG1), R0O.bn );

40

13 TEXAS
INSTRUMENTS




Load/Store Instructions, cont’d

» Load Byte Burst with Constant Table Offset (LBCO)

a

a

The LBCO instruction is used to read a block of data from memory into the register file. The memory address to
read from is specified by a 32 bit constant register (Cn2), using an optional offset from an immediate or register
value. The destination in the register file is specified as a direct register.
Format 1 (immediate count) definition:
LBCO REG1, Cn2, OP(255), IM(124)
Format 1 (immediate count) operation:
memcpy( offset(REG1), Cn2+OP(255), IM(124) );
Format 2 (register count) definition:
LBCO REG1, Cn2, OP(255), bn
Format 2 (register count) operation:
memcpy( offset(REG1), Cn2+OP(255), R0.bn );

» Store Byte Burst with Constant Table Offset (SBCO)

a

The SBCO instruction is used to write a block of data from the register file into memory. The memory address to

write to is specified by a 32 bit constant register (Cn2), using an optional offset from an immediate or register
value. The source in the register file is specified as a direct register.

Format 1 (immediate count) definition:
SBCO REG1, Cn2, OP(255), IM(124)

Format 1 (immediate count) operation:
memcpy( Cn2+0P(255), offset(REG1), IM(124) );

Format 2 (register count) definition:
SBCO REG1, Cn2, OP(255), bn

Format 2 (register count) operation:
memcpy( Cn2+0P(255), offset(REG1), RO.bn );

41

13 TEXAS
INSTRUMENTS




{f

TexAs
INSTRUMENTS




PASM Overview

» PASM is a command-line assembler for the PRU cores
QO Converts PRU assembly source files to loadable binary data
QO Output format can be raw binary, C array (default), or hex
a Other debug formats also can be output

» Command line syntax:
pasm [-bcmldxz] SourceFile [-Dname=value] [-CArrayname]

» The PASM tool generates a single monolithic binary
O No linking, no sections, no memory maps, etc.
0 Code image begins at start of IRAM (offset 0x0000)

43

13 TEXAS
INSTRUMENTS




Valid Assembly File Inputs

» Four basic assembler statements
O Hash commands
O Dot commands (directives)
O Labels

Q Instructions
» True instructions (defined previously)
» Pseudo-instructions

» Assembly comments allowed and ignored
O Use the double slash single-line format of C/C++
O Always appear as last field on a line
O Example:

|di rO, 100 // This is a comment

44

13 TEXAS
INSTRUMENTS




Assembler Hash statements

» Similar to C pre-processor commands
» #include™filename”

O Specified filename is immediately opened, parsed, and processed
a Allows splitting large PRU assembly code into separate files

> #define
QO Specify a simple text substitution

O Can also be used to define empty substitution for use with #ifdef,
#ifndef, etc.

» #undef — Used to undefine a substitution previously
defined with #define

» Others (#ifdef, #ifndef, #else, #endif, #error) as used in C
preprocessor

45

13 TEXAS
INSTRUMENTS




Assembler Dot Commands

» All dot commands
start with a period (the
dot)

» Rules for use

0 Must be only assembly
statement on line

a Can be followed by
comments

0 Not required to start in
column O

Command | Description

.origin Set start of next assembly
statement

.entrypoint Only used for debugger, specifies
starting address

.setcallreg Specified 16-bit register field for

storing return pointer

.macro, .mparam,
.endm

Define assembler macros

.struct, .ends, .u32,
.u16, .u8

Define structure types for easier
register allocation

.assign Map defined structure into PRU
register file

.enter Create and enter new variable
scope

Jleave Leave a specific variable scope

.using Use a previously created and left

scope

13 TEXAS
INSTRUMENTS




Macro Example

» PASM macros using dot commands expand are like C
preprocessor macros using #define

» They save typing and can make code cleaner

» Common macro:
//

// mov32 : Move a 32bit value to a register
//
// Usage:
// mov32 dst, src
//
// Sets dst = src. Src must be a 32 bit immediate value.
//
.macro MOV32
.mparam dst, src
LDI dst.w0O, src & OxFFFF
LDI dst.w2, src >> 16
.endm

» Macro invoked as:

MOV32 r0, 0x12345678

13 TEXAS
INSTRUMENTS




Struct Example

> Like in C, defined structures can be useful for defining offsets and mapping

data into registers/memory

» Declared similar to using typedef in C

a0 PASM automatically processes each declared structure template and creates

an internal structure type.

O The named structure type is not yet associated with any registers or storage.

» Example from C:
typedef struct PktDesc

{
struct PktDesc *pNext;
char *pBuffer;
unsigned short Offset;

unsigned short BuflLength;

unsigned short Flags;

unsigned short PktLength;

} PKTDESC;

» Now in PASM assembly:
.struct PktDesc

.u32
.u32
.ulo6
.ulo6
.ulo
.ulo
.ends

pNext
pBuffer
Offset
BufLength
Flags
PktLength

48

13 TEXAS
INSTRUMENTS




Struct Example, cont’d

>

To use the created structure type, we use
.assign statement to map a region of the
register file for use with struct syntax

Example, using previously defined struct:
.assign PktDesc, R4, R7, RxDesc

When PASM sees this assignment, it will
perform three tasks:

o Verify that the structure perfectly spans the
declared range (in this case R4 through R7).
The application developer can avoid the formal
range declaration by substituting ™’ for 'R7’
above.

o Verify that all structure fields are able to be
mapped onto the declared range without any
alignment issues. If an alignment issue is found,
it is reported as an error along with the field in
question. Note that assignments can begin on
any register boundary.

o Create an internal data type named "RxDesc",
which is of type "PktDesc".

For the above assignment, variable to register
mapping is as shown
Using .struct and .assign means only a single

code change if we want to relocate the
variables in the register file

Variable

Register Assignment

RxDesc

R4

RxDesc.pNext

R4

RxDesc.pBuffer

R5

RxDesc.Offset

R6.w0

RxDesc.BufLength

R6.w2

RxDesc.Flags

R7.w0

RxDesc.PktLength

R7.w2

49

13 TEXAS
INSTRUMENTS




Labels

>

Labels are used denote program addresses. When placed at the
beginning of a source line and immediately followed by a colon ™', they
mark a program address location

When referenced by an instruction, the corresponding marked address
is substituted for the label

The rules for labels are as follows:
O A label definition must be immediately followed by a colon
a Only instructions and/or comments can occupy the same source line as a
label
O Labels can use characters A-Z, a-z, 0-9,underscores,and periods

O A label can not begin with a number (0-9)

Example:
LDI r0, 100

loop label:
SUB r0O, r0, 1
OBNE loop label, r0O, O
RET

50

13 TEXAS
INSTRUMENTS




Instructions vs Psuedo-instructions

» Directly supported hardware instructions detailed
previously

» PASM also supports a number of psuedo-
instructions that expand to true hardware
Instructions

a Copy Value (MOV)

Q Clear Register Space (ZERO)
a Wait until Bit Set (WBS)

a Wait until Bit Clear (WBC)

Q Call Procedure (CALL)

Q Return from Procedure (RET)

51

13 TEXAS
INSTRUMENTS




{f

TexAs
INSTRUMENTS




Package Contents
» Bin directory

2 PR peveloement. 100 a PASM binary tool
@mg_,_ﬁ% > Doc

m_@m_mwﬁg 0 Current documentation
anmuwﬂwﬁwﬂw_w 0 Reference to online documentation
s otonse » Examples
—finpieiiiig a Collection of CCSv3 DSP projects and
S e maomoRen associated PRU code
e e > Host
mmmmww”ﬂ;a o Common: R.Vm_.. PRU APIs, various
() PRU_tmer0Contig helper functions used by examples

P~ a DSP: CCSv3 loader examples for

o g C674x DSP core

53

13 TEXAS
INSTRUMENTS




Package Contents, cont’d

» All projects are for DSP core and are for CCS v3.3

» Most up to date documentation will be found
online on TI MediaWiki

» Packaged installers provided for Windows and
Linux OSes

54

13 TEXAS
INSTRUMENTS




{f

TexAs
INSTRUMENTS




Loading and Running PRU Code

» Host processor of SoC must load code to a PRU and kick
off its execution

» Software release contains simple APls built on top of
register layer CSL (included in package).

Q

Q

PRU _disable() — Put PRUs into reset state and disable PRUSS via
PSCO

PRU_enable() — Enable PRUSS via PSCO and put PRUs into reset
state

PRU_load() — Enable PRUSS if not enabled, then copy code to
IRAM of specified PRU core

PRU_run() — Start execution of specified PRU core.

PRU_waitForHalt() — Wait for specified PRU to halt, with optional
timeout

56

13 TEXAS
INSTRUMENTS




Loading Examples

» Software package includes two loading examples

0 DSP loading the PRU using an embedded C array
(same way the collection of examples do)

a DSP loading the PRU using fileio to read a binary file
from the hard disk

» Loading examples exercise the PRU APIs
» Located in host/dsp directory of software package

57

13 TEXAS
INSTRUMENTS




{f

TexAs
INSTRUMENTS




Development Examples

» Collection of various examples
Q Show host processor interacting with

O S e CPU
D PR s const e 0 Show example syntax for PASM
S s assembly code
WMMH - 0 Show how to use PRU constant table
0 menacssupaon for memory access and peripheral
e configuration
D et 0 Show PRU responding to and

£ PRU_tmer0Coni generating system events

I PRU_timerQInterrupt
a Show the two PRU cores interacting
with each other

59

13 TEXAS
INSTRUMENTS




Program structure and conventions

» All PRU assembly code files are named with extension .p

» Header files with global macro/struct definitions and
#define and .assign statements are named with extension
.np

» All examples include at a minimum

Q c-file: C code that runs on DSP
a p-file: Assembly code that runs on the PRU
a hp-file: Header file for PRU assembly code
Q pjt-file: CCS project file
= Contains prebuild commands to run the PASM tool on the p-file

= The generated C array file is included in the DSP c-file for loading to
the PRU via PRU_load() function

60

13 TEXAS
INSTRUMENTS




